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Microwave Modeling of Rectangular Tunnels

BENJAMIN JACARD anp OSCAR MALDONADO, MEMBER, 1IEEE

Abstract —Natural propagation of electromagnetic waves in rectangular
tunnels is investigated experimentally at microwave frequencies (1-10
GHz) using a tunnel model of reduced dimensions made of a lossy mixture
of sand, water, and salt. The experimental results for the propagation
constant of the low-order modes agree satisfactorily with theoretical predic-
tions. Practical applications of the experimental technique are discussed.

I. INTRODUCTION

O DESIGN IMPROVED communication systems in
mine and road tunnels it is necessary to understand

the mechanisms of natural propagation. This is not always
possible due to difficulties in finding suitable theories for
real tunnels. Furthermore, there is not enough experimen-
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work was supported by the University of Chile under Grant DDI 1448-
8323.

The authors are with the Department of Electrical Engineering, Univer-
sity of Chile, Santiago, Chile.

tal data on tunnels to verify the approximate theories
proposed. Reliable measurements in real tunnels are dif-
ficult and costly due to instrumentation and access prob-
lems. For these reasons we propose the use of scale-model-
ing techniques using tunnel models made from a mixture of
sand, water, and salt. This mixture has been previously
used for modeling real ground at microwave frequencies
(1], [2]

In this paper, experimental results are presented for
propagation in a microwave-modeled rectangular tunnel.
Results compare satisfactorily with published theory [3],
suggesting that this modeling technique could be success-
fully used for investigating experimentally the propagation
in other tunnels of more complex geometry where the
theoretical approach would be difficult to apply.

II. THEORY OF PROPAGATION

An exact analytical solution for propagation in a rectan-
gular tunnel is not possible because of the difficulty in

0018-9480,/84,/0600-0576$01.00 ©1984 IEEE
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Geometry of waveguides.

matching the boundary conditions [4]. An approximate
theory has been recently proposed [3]. The propagation
constant y of a general EH mode in a rectangular tunnel of
width ¢ and height b is given by

— K2+ k2 — k2 (1)

where &, and k, are complex transverse wavenumbers and
kg is the free-space wavenumber.

Considering, for example, only vertically polarized waves,
it has been shown [3] that k, and k, can be given by the
transverse wavenumbers of two 1nf1n1te slot waveguides of
slot widths 4 and b, respectively, one supporting a TE
mode and the other a TM mode as shown in Fig. 1.

The boundary value problem of the slot waveguides with
lossy walls is easily solved using a standard procedure [5],
[6]. It will be assumed that the source of the fields in the
rectangular tunnel excites only vertically polarized waves
and that these are even about x =0 and y = 0; therefore,
the same conditions will apply to the E field in the slot
waveguides depicted in Fig. 1.

With the above symmetry considerations, the electro-
magnetic boundary conditions yield the following transcen-
dental equations for k, and k:

- (0
K, tan(k,b/2) = (k3(1-¢,)—k2)

¢)-k2)"” )
1/2

/& (3)
where €, is the complex relative permittivity of the walls
(& =[e~ j(o/w)l/¢).

First estimates for the roots k, and k, of (2) and (3)
may be taken from the transverse wavenumbers of odd TE
modes (i.e., TE;y, TE4,---,TE,,) and even TM modes
(i-e., TMyy, TM,,- - -, TM,,,) in perfectly conducting slot
waveguides of widths a and b, respectively. Once the

transverse wavenumbers are determined, the propagation
constant of a natural mode EH,,,, will be given by (1).

1L

The experimental model of a tunnel was built with a
mixture of sand, 18-percent water, and 2-percent salt
(weight percentages relative to the weight of the sand)
which at 9.3 GHz gives approximately a relative permittiv-
ity €, =9.3 and a loss tangent tand = 0.6 [2]. The tunnel
was formed by surrounding a polyfoam slab with this
mixture. The slab had dimensions 0.08 m X 0.05 mX2 m
and very low relative permittivity (e, = 1.03); it was placed
for practical reasons over an aluminum plate, as illustrated
in Fig. 2. The resulting tunnel with its image had a cross
section a X b with ¢ =0.08 m and » = 0.10 m, which may

k. tan(k,a/2)

EXPERIMENTAL MODEL

511

Aluminum

/Dlale

= Efectric image

P S SO S 4

Fig. 2. Tunnel model geometry. a =8 cm, b =10 cm:

be taken to represent the Lanaye tunnel reported by Deryck
[7] using a scaling factor of 50. Although the conductivity
of this tunnel (10 mS/m at 30 MHz) was not properly
scaled in the model in order to simulate an adequate
electrical wall thickness, we expect to obtain from the
model, in the band 1-10 GHz, similar propagation char-
acteristics to those found in the real tunnel in the band
20-200 MHz.

The tunnel model was fed, 0.25 m from one end, by a
monopole (1.75-cm height) vertically protruding at the
center of the tunnel through the aluminum plate (Fig. 2). .
In this way, only vertically polarized waves of even symme-
try were excited.

The relative amplitude and phase of the field inside the
tunnel were measured on an HP 8410A Network Analyzer
connected to a sliding vertical monopole probe (8.2-mm
height) on the tunnel axis. The monopole and its feeding
coaxial cable (2.5-mm diameter) lay on the aluminum plate
and were moved by means of a string and pulley mecha-
nism. The probe position was measured by an HP 7035B
X-Y Recorder using as its reference a linear potentiometer
formed by a resistive wire outside the tunnel and a sliding
contact pulled by the string.

For convenience, the height of the monopole probes was
not varied with frequency since we were interested only in
relative amplitude and phase field measurements leading to
the evaluation of the propagation constant of the modes.

IV. MEASURING TECHNIQUES

The attenuation constant « of a propagating mode can
be obtained from a plot of field strength in decibels against
distance along the tunnel. The attenuation in decibels per
meter will be given by the slope of the nearly straight line
appearing in the plot when a single mode predominates. A
beat pattern will indicate the presence of two or more
modes propagating simultaneously, and the identification
of the modes will be more involved. When two modes
propagate with similar amplitudes and different phase
constants B; and fB,, a regular beat pattern will be ob-
tained, providing the necessary information for the calcula-
tion of the propagation constants of both modes, as shown
in the Appendix.

In a similar manner, the phase constant 8 can be ob-
tained by plotting the relative phase of the field against
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Fig. 4. Relative amplitude and phase distributions at 5.0 GHz.

distance along the tunnel. If only one mode propagates, the
plot will consist of nearly straight line segments with
well-defined slopes from which the phase constant can be
determined. When two modes propagate, the beat wave-
length A, of the amplitude pattern is easily measured and
may be useful to identify the phase constant of one of the
modes provided the phase constant of the other is already
known (e.g., from the phase distribution far from the
tunnel feed) since A, = 27/( 8, — B,).

V. EXPERIMENTAL RESULTS

Typical relative amplitude and phase distributions along
the tunnel model outlined in Section Il are illustrated in
Figs. 3, 4, 5, and 6 for frequencies 2.0. 3.0, 7.0. and 9.5
GHz, respectively, Between 1 and 3 GHz, only one mode
was detected and its propagation constant was easily de-
termined from the amplitude and phase distributions (see
Fig. 3). In the band from 3 to 6 GHz, two-mode inter-
ference patterns were clearly obtained, as shown in Fig. 4.

From 6 to 9.0-GHz irregular amplitude distributions
were obtained, and this is attributed to the interference of
more than two propagating modes. Only at 7.0 GHz could
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TABLEI
MODE PARAMETERS
MODE 1 MOOE 2
FREQUENCY] RELATIVE & 8 RELATIVE LS 3
n GHz  JAMPLITUI wn Np/m | in rd/m JAMPLITUDE! n Np/m | in rd/m
100 100 228
125 100 18 8
1 60 100 158 16 3
170 100 12 6 187
200 100 85 26 4
250 100 83 413
316 100 50 56 2
3 98 100 402 747 063 112 43 2
500 100 32 94 3 078 82 722
700 — 30 134 9 — _ —
950 028 26 176 7 100 52 146 7

one of the modes be identified due to its predominance far
from the feeding end of the tunnel (see Fig. 5).

At 9.5 GHz, again a regular interference pattern was
obtained (see Fig. 6), permitting the identification of the
propagating modes with the procedure outlined in the
Appendix.



JACARD AND MALDONADO: MICROWAVE MODELING OF RECTANGULAR TUNNELS

Experimental values of the propagation constant and
relative amplitude of the modes identified in the band
1-10 GHz are included in Table I. In order to test the
consistency of the values obtained from interference pat-
terns (using four points), they have been used to synthesize
the complete amplitude distribution along the tunnel by
means of (A2) in the Appendix. Satisfactory agreement
with the experimental distribution was obtained as shown
in Figs. 4 and 6, (where the synthesized patterns are
represented by dots), thus confirming the predominance of
two propagating modes.

VI

Theoretical predictions for the propagation constant of
the natural modes in the scale model can be obtained
applying the method outlined in Section II to an equivalent
tunnel of 8-cm width and 10-cm height with its four walls
having the same electrical parameters and excited by a
centered vertical dipole. For simplicity, the electrical
parameters € and ¢ of the mixture used will be assumed to
be frequency independent in the band 1-10 GHz. The
assumed values will be €,=9.3 and ¢ =2.88 S/m, which
correspond to measurements at 9.3 GHz.

The above assumption may introduce some discrepancy
between experimental and theoretical results in the low-
frequency end of the band since in rocks and related
materials it has been found that, in general, conductivity
increases and the dielectric constant decreases with
frequency, with much lower variations for e [6].

Numerical values for the attenuation constant « and the
phase constant B, obtained from (2) and (3), are plotted in
Figs. 7 and 8 where the experimental values (represented
by crosses) are also included. There is an excellent agree-
ment between the experimental and the theoretical results
which supports the validity of the approximate theoretical
model and makes clear that the low-order hybrid modes
propagating in this case may be considered as perturba-
tions of the TE,;, TE,, and TE,, modes in a perfectly
conducting guide of cross section a X b. (Another, but
much more difficult, procedure for mode identification
could be to measure the field distributions in the transverse
section of the tunnel and compare with theoretical expres-
sions, such as given by Emslie ef al. [8]; however, this was
deemed unnecessary because of the good agreement shown
in Fig. 8.)

As shown in Fig. 7, the excited mode with the lowest
attenuation is the perturbed TE ;. Its attenuation constant
monotonically decreases with increasing frequency. The
detection of higher order modes (perturbed TE;, and
TE,,) propagating simultaneously with the TE,, was possi-
ble at frequencies above the corresponding cutoff frequen-
cies in a perfectly conducting tunnel, although their at-
tenuation constant was high.

It is noteworthy that at the high end of the frequency
band considered, the mode detected with highest amplitude
was the perturbed TE,, in spite of its high attenuation
compared to that of the TE,, mode. This can be justified
recalling that the measured relative amplitudes included in

DISCUSSION OF RESULTS
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Table I are influenced by the mode-coupling efficiency of
the transmitting and receiving probes. (In a metallic rectan-
gular waveguide, the amplitude ratio between any two
TE,,, modes excited by a centered electric probe depends
on the probe height, the field distribution, and the wave
impedance of the corresponding mode; but in the special
case of TE,, modes, where there is no field variation along
the probe axis, the amplitude ratio of the modes is given by
the ratio of the corresponding wave impedances [9].)

The circles in Fig. 7 represent measured attenuvation
values of natural propagation in the Lanaye tunnel, scaled
by a factor of 50, showing similarity to the results obtained
in the model, especially in the high end of the band where
refraction loss predominates over ohmic loss, and therefore
the influence of a not exactly scaled conductivity di-
minishes.
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VI

Microwave modeling of a rectangular tunnel with a
mixture of sand, water, and salt has permitted the experi-
mental investigation of some of the natural propagation
characteristics in less time and at lower cost than in a real
tunnel.

The results show considerable similarity to those from a
full-size tunnel in Belgium, although its conductivity was
not exactly scaled in the model. Also, the good agreement
found between experimental and theoretical results for the
propagation constant of the natural modes in the tunnel
model confirm the validity of the theoretical approach
used.

The model has contributed to the understanding of the
propagation mechanism in rectangular tunnels, showing
that at high frequencies higher order modes can be better
excited than the dominant mode (perturbed TE,,) al-
though the latter has a lower attenuation. This fact may
produce an interference pattern with deep nulls in the
amplitude distribution along the tunnel which may pre-
clude the use of too high frequencies for mobile radio
communications using the tunnel as a guide.

The modeling technique used here has provided reliable
data for electromagnetic wave propagation in rectangular
tunnels. The versatility of the wet-sand mixture in simulat-
ing tunnel walls (¢, o can be easily varied by changing the
relative percentages of the mixture constituents) suggests
that this technique may be successfully used to investigate
the influence of different electrical and geometrical char-
acteristics of tunnels (such as cross section, rugosity, curva-
tures, intersections, obstructions, and conductors) on prop-
agation.

CONCLUSIONS

APPENDIX
ANALYSIS OF TWO-MODE PROPAGATION

We shall consider two modes E,(z) and E,(z) propagat-
ing in the z* direction with detected amplitudes E/, EJ at
the feed position z =0 and propagation constants v,, v,.

The total field, neglecting reflections, is therefore given
by

Er(z) = Efe 7Pz 4 Ezfe—azzfj(ﬁzz—\ld)
=|Er(z)[e*® (A1)
where ¥ is the phase difference between the two modes at
z=0.
The amplitude of E,(z) is
IET(Z)I - {E{Ze~2alz + E1/2e—2a22

12

+2E/Efe "1 )2 cos [(B, — B,)z + ¢] } (A2)

Equation (A2) represents an interference pattern whose
beat wavelength is given by

Ay=2m/(By—B,). (A3)
The maxima and minima of the beat pattern will occur

at positions z, such that (8; — 8,)z, + ¢ is equal to 2nw
and (2n + 1), respectively (n=0,1,2,- - -).
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Defining the amplitudes E,, (z,), E;,.(2,), E,,,(z,), and
E;,(z3) asin Fig. 9, we have

EOm = El’e‘al(ll—A) — Ez’e*az(zl'A) (A4)
E,,, = Ele” %1+ Ele™ %% (AS5)
E,, = Elle*al(ZﬁA) _Ezfe*az(zlJrA) (A6)
E3m — El/e—al(z1+2A)+E2/e—a2(zl+2A) (A7)

where A=A, /2.
From (A4) to (A7) the following equation for a, may be
obtained:

e
1 —
v+

1 2e
+ Z =2
€

3153"‘33 62_612 €163 —

2e, e, e,

+ + (A8)

2 2)071 ;=0
e,— el eey—e? e, — e’

ayA

where v=c¢ and

e, === (i=1,2,3).

Om

Equation (A8) can be factorized as follows:

1 _ e, —ee
( v 24 3 1€2

v i+
(e1e3—e§)(ez—e12) e, — e}

(elu_l + ez) =0. (A9)
Roots for v with physical meaning can only be obtained
from the quadratic factor of (A9)
(e;—e?)v 2 +(ey—ere,)v ' +ejey—e2=0.
(A10)

A real and positive solution of (A10) permits one to
calculate a,

ay =y Inov. (A11)
The rest of the field parameters are given by
1. 1+ Kv
=7 In e~ K (A12)
Ej/E,,, = Ke*" (A13)
E{/Egy= (€= K)e™n (A14)
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where

K= (ef—ez)/(%+ve2+2e1).

If it is assumed that the phase constant of one of the
modes is known from the phase distribution, the phase
constant of the other mode is obtained from (A3).

The phase shift ¢ may be obtained from the position of
one of the minima (z,,) in the experimental beat pattern

{¢=w(2n+1—2—;§1)

In case of uncertainty in the magnitude of some minima
in the measured interference pattern, it is possible to use a
similar procedure for identifying the unknown field param-
eters using only the magnitude and position of maxima or
other suitable combinations of both maxima and minima.

(A15)

=0,1,2,---}.
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