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Microwave Modeling of Rectangular Tunnels

BENJAMIN JACARD AND OSCAR MALDONADO, MEMBER, IEEE

Abstract —Natural propagation of electromagnetic waves in rectangular

tunnels is investigated experimentally at microwave frequencies (1-10

GHz) using a tunnel model of reduced dimensions made of a 10SSYmixture

of sand, water, and salt. The experimental results for the propagation

constant of the low-order modes agree satisfactorily with theoretical predic-

tions. Practical applications of the experimental techniqne are discnssed.

I. INTRODUCTION

T O DESIGN IMPROVED communication systems in

mine and road tunnels it is necessary to understand

the mechanisms of natural propagation. This is not always

possible due to difficulties in finding suitable theories for

real tunnels. Furthermore, there is not enough experimen-
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tal data on tunnels to verify the approximate theories

proposed. Reliable measurements in real tunnels are dif-

ficult and costly due to instrumentation and access prob-

lems. For these reasons we propose the use of scale-model-

ing techniques using tunnel models made from a mixture of

sand, water, and salt. This mixture has been previously

used for modeling real ground at microwave frequencies

[1], [2].

In this paper, experimental results are presented for

propagation in a microwave-modeled rectangular tunnel.

Results compare satisfactorily with published theory [3],

suggesting that this modeling technique could be success-

fully used for investigating experimentally the propagation

in other tunnels of more complex geometry where the

theoretical approach would be difficult to apply.

II. THEORY OF PROPAGATION

An exact analytical solution for propagation in a rectan-

gular tunnel is not possible because of the difficulty in
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Fig. 1. Geometry of waveguides,

matching the boundary conditions [4]. An approximate

theory has been recently proposed [3], The propagation

constant y of a general EH mode in a rectangular tunnel of

width a and height b is given by

yz=k; +k; –kzo (1)

where kx and kj, are complex transverse wavenumbers and

k. is the free-space wavenumber.

Considering, for example, only vertically polarized waves,

it has been shown [3] that kx and ky can be given by the

transverse wavenumbers of two infinite slot waveguides of

slot widths a and b, respectively, one supporting a TE

mode and the other a TM mode as shown in Fig. 1.

The boundary value problem of the slot waveguides with

lossy walls is easily solved using a standard procedure [5],

[6]. It will be assumed that the source of the fields in the

rectangular tunnel excites only vertically polarized waves

and that these are even about x = O and y = O; therefore,

the same conditions will apply to the E field in the slot

waveguides depicted in Fig. 1.

With the above symmetry considerations, the electro-

magnetic boundary conditions yield the following transcen-

dental equations for kx and ky:

kx tan(kxa/2) = (k~(l– z,)- kj)l” (2)

k} tan(kyb/2) = (k:(l – z,)– k;)l’2/E, (3)

where .?, is the complex relative permittivity of the walls

(Fr = [c - j(u/@)]/6,).

First estimates for the roots kx and ky of (2) and (3)

may be taken from the transverse wavenumbers of odd TE

modes (i.e., TEIO, TE30, ” “ ., TE~O) and even TM modes

(i.e., TMW, TM02,. . ., TMo~) in perfectly conducting slot

waveguides of widths a and b, respectively. Once the

transverse wavenumbers are determined, the propagation

constant of a natural mode EH.~ will be given by (l).

111, EXPE~I~NTAL MODEL

The experimental model of a tunnel was built with a

mixture of sand, 18-percent water, and 2-percent salt

(weight percentages relative to the weight of the sand)

which at 9.3 GHz gives approximately a relative permittiv-

ity c, = 9.3 and a loss tangent tan d = 0,6 [2], The tunnel

was formed by surrounding a polyfoam slab with this

mixture. The slab had dimensions 0.08 m x0.05 m x 2 m

and very low relative permittivity (c, = 1.03); it was placed
for practical reasons over an aluminum plate, as illustrated

in Fig. 2. The resulting tunnel with its image had a cross

section a X b with a = 0.08 m and b = 0.10 m, which may

Fig. 2. Tunnel model geometry. a = 8 cm, b =10 cm,

be taken to represent the Lanaye tunnel reported by Deryck

[7] using a scaling factor of 50. Although the conductivity

of this tunnel (1 O mS/m at 30 MHz) was not properly

scaled in the model in order to simulate an adequate

electrical wall thickness, we expect to obtain from the

model, in the band 1–10 GHz, similar propagation char-

acteristics to those found in the real tunnel in the band

20-200 MHz.

The tunnel mc}del was fed, 0.25 m from one end, by a

monopole (1.75-cm height) vertically protruding at the

center of the tunnel through the aluminum plate (Fig. 2).

In this way, only vertically polarized waves of even symme-

try were excited.

The relative amplitude and phase of the field inside the

tunnel were measured on an HP 841OA Network Analyzer

connected to a sliding vertical monopole probe (8.2-mm

height) on the tunnel axis. The monopole and its feeding

coaxial cable (2.5-mm diameter) lay on the aluminum plate

and were moved by means of a string and pulley mecha-

nism. The probe position was measured by an HP 7035B

X– Y Recorder using as its reference a linear potentiometer

formed by a resistive wire outside the tunnel and a sliding

contact pulled by the string,

For convenience, the height of the monopole probes was

not varied with frequency since we were interested only in

relative amplitude and phase field measurements leading to

the evaluation of the propagation constant of the modes.

IV, MEASURING TECHNIQUES

The attenuation constant a of a propagating mode can

be obtained from a plot of field strength in decibels against

distance along the tunnel. The attenuation in decibels per

meter will be given by the slope of the nearly straight line

appearing in the plot when a single mode predominates. A

beat pattern will indicate the presence of two or more

modes propagating simultaneously, and the identification

of the modes will be more involved. When two modes

propagate with similar amplitudes and different phase

constants & and /32, a regular beat pattern will be ob-

tained, providing the necessary information for the calcula-

tion of the propagation constants of both modes, as shown

in the Appendix.

In a similar manner, the phase constant ~ can be ob-

tained by plotting the relative phase of the field against
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Fig. 5, Relative amplitude and phase distributions at 7,0 GHz

Fig, 3. Relative amplitude and phase dntributions at 2.0 GHz
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Fig. 4. Relative amplitude and phase distributions at 5.0 GHz.

distance along the tunnel. If only one mode propagates, the

plot will consist of nearly straight line segments with

well-defined slopes from which the phase constant can be

determined. When two modes propagate, the beat wave-

length h~ of the amplitude pattern is easily measured and

may be useful to identify the phase constant of one of the

modes provided the phase constant of the other is already

known (e.g., from the phase distribution far from the

tunnel feed) since Ah = 2 ~/(&–&).

V. EXPERIMENTAL RESULTS

Typical relative amplitude and phase distributions along

the tunnel model outlined in Section 111 are illustrated in

Figs. 3, 4, 5, and 6 for frequencies 2.0.5.0, 7.0. and 9.5

GHz, respectively. Between 1 and 3 GHz, only one mode

was detected and its propagation constant was easily de-

termined from the amplitude and phase distributions (see

Fig. 3). In the band from 3 to 6 GHz, two-mode inter-

ference patterns were clearly obtained, as shown in Fig. 4.

From 6 to 9. O-GHZ irregular amplitude distributions

were obtained, and this is attributed to the interference of

more than two propagating modes. Only at 7.0 GHz could

Fig. 6, Relatlve amphtude and phase distributions at 9.5 GHz.
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one of the modes be identified due to its predominance far

from the feeding end of the tunnel (see Fig. 5).

At 9.5 GHz, again a regular interference pattern was

obtained (see Fig. 6), permitting the identification of the

propagating modes with the procedure outlined in the

Amendix.
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Experimental values of the propagation constant and

relative amplitude of the modes identified in the band

1-10 GHz are included in Table I. In order to test the

consistency of the values obtained from interference pat-

terns (using four points), they have been used to synthesize

the complete amplitude distribution along the tunnel by

means of (A2) in the Appendix. Satisfactory agreement

with the experimental distribution was obtained as shown

in Figs. 4 and 6, (where the synthesized patterns are

represented by dots), thus confirming the predominance of

two propagating modes.

VI. DISCUSSION OF RESULTS

Theoretical predictions for the propagation constant of

the natural modes in the scale model can be obtained

applying the method outlined in Section II to an equivalent

tunnel of 8-cm width and 10-cm height with its four walls

having the same electrical parameters and excited by a

centered vertical dipole. For simplicity, the electrical

parameters c and u of the mixture used will be assumed to

be frequency independent in the band 1-10 GHz. The

assumed values will be ~,= 9.3 and u = 2.88 S/m, which

correspond to measurements at 9.3 GHz.

The above assumption may introduce some discrepancy

between experimental and theoretical results in the low-

frequency end of the band since in rocks and related

materials it has been found that, in general, conductivity

increases and the dielectric constant decreases with

frequency, with much lower variations for c [6].

Numerical values for the attenuation constant a and the

phase constant j?, obtained from (2) and (3), are plotted in

Figs. 7 and 8 where the experimental values (represented

by crosses) are also included. There is an excellent agree-

ment between the experimental and the theoretical results

which supports the validity of the approximate theoretical

model and makes clear that the low-order hybrid modes

propagating in this case may be considered as perturba-

tions of the TEIO, TEIZ, and TE~O modes in a perfectly

conducting guide of cross section a x b, (Another, but

much more difficult, procedure for mode identification

could be to measure the field distributions in the transverse

section of the tunnel and compare with theoretical expres-

sions, such as given by Emslie et al. [8]; however, this was

deemed unnecessary because of the good agreement shown

in Fig. 8.)

As shown in Fig. 7, the excited mode with the lowest

attenuation is the perturbed TEIO. Its attenuation constant

monotonically decreases with increasing frequency. The

detection of higher order modes (perturbed TEIZ and

TEqO ) propagating simultaneously with the TEIO was possi-

ble at frequencies above the corresponding cutoff frequen-

cies in a perfectly conducting tunnel, although their at-

tenuation constant was high.

It is noteworthy that at the high end of the frequency

band considered, the mode detected with highest amplitude
was the perturbed TE~O in spite of its high attenuation

compared to that of the TEIO mode. This can be justified

recalling that the measured relative amplitudes included in
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Table I are influenced by the mode-coupling efficiency of

the transmitting and receiving probes. (In a metallic rectan-

gular waveguide, the amplitude ratio between any two
TE~~ modes excited by a centered electric probe depends

on the probe height, the field distribution, and the wave

impedance of the corresponding mode; but in the special

case of TE.O modes, where there is no field variation along

the probe axis, the amplitude ratio of the modes is given by

the ratio of the corresponding wave impedances [9].)

The circles in Fig. 7 represent measured attenuation

values of natural propagation in the Lanaye tunnel, scaled

by a factor of 50, showing similarity to the results obtained

in the model, especially in the high end of the band where

refraction loss predominates over ohmic loss, and therefore
the influence of a not exactly scaled conductivity di-

minishes.
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VI. CONCLUSIONS

Microwave modeling of a rectangular tunnel with a

mixture of sand, water, and salt has permitted the experi-

mental investigation of some of the natural propagation

characteristics in less time and at lower cost than in a real

tunnel.

The results show considerable similarity to those from a

full-size tunnel in Belgium, although its conductivity was

not exactly scaled in the model. Also, the good agreement

found between experimental and theoretical results for the

propagation constant of the natural modes in the tunnel

model confirm the validity of the theoretical approach

used.

The model has contributed to the understanding of the

propagation mechanism in rectangular tunnels, showing

that at high frequencies higher order modes can be better

excited than the dominant mode (perturbed TEIO ) al-

though the latter has a lower attenuation. This fact may

produce an interference pattern with deep nulls in the

amplitude distribution along the tunnel which may pre-

clude the use of too high frequencies for mobile radio

communications using the tunnel as a guide.

The modeling technique used here has provided reliable

data for electromagnetic wave propagation in rectangular

tunnels. The versatility of the wet-sand mixture in simulat-

ing tunnel walls (c, u can be easily varied by changing the

relative percentages of the mixture constituents) suggests

that this technique may be successfully used to investigate

the influence of different electrical and geometrical char-

acteristics of tunnels (such as cross section, rugosity, curva-

tures, intersections, obstructions, and conductors) on prop-

agation.

APPENDIX

ANALYSIS OF TWO-MODE PROPAGATION

We shall consider two modes El(z) and Ez(z) propagat-

ing in the z+ direction with detected amplitudes E{, E; at

the feed position z = O and propagation constants yl, y2.

The total field, neglecting reflections, is therefore given

by

ET(z) = lj(e-”lz-~~l’ + &e-~2Z-J(P2Z-+)

=lET(z)leJ+(’) (Al)

where ~ is the phase difference between the two modes at

Z=o.

The amplitude of ET(z) is

]E=(z)l = { E(2e-2”1z + E(’e-’”z’

+2E{E~e-(”l+”Z)’cos[(& –&)z + ~] }1’2. (A2)

Equation (A2) represents an interference pattern whose

beat wavelength is given by

‘b=2n/(&-&)o (A3)

The maxima and minima of the beat pattern will occur

at positions z, such that (@l – ~2 )Zt + I) is equal to 2rz r

and (2n + l)n, respectively (n = 0,1,2, . . . ).

[E,

c

E2rn E,rr

Fig. 9. Two-mode interference pattern.

Defining the amplitudes EOm(zO), Elm (zI), E’m (z2 ), and

E3~(z3 ) as in Fig. 9, we have

EOW= E(e-”l(’l-A) _ E;e-a2(z1-A) (A4)

Elm = E~e–alzl + E~e–”,Zl (A5)

E2~ = E<e-”ll’l+A) _ E~e-aZ(Zl+A) (A6)

E3m = E{e-%(’l+2A) + E~e-az(zl+2A) (A7)

where A = Ah/2.

From (A4) to (A7) the following equation for cr2 may be

obtained:

el
–3+ ( 1 2e2

v —+
1

V-2
e1e3 — e; e2 — et elej — e;

( 2e1+ e3
—+ )v–1+~ =o (A8)
e2 — e; ele~ — e; e2 — e;

where v = eazA and

E
e,=!zl

E
(i=l,2,3).

Om

Equation (A8) can be factorized as follows:

(e,v-l + e2) = O. (A9)

Roots for v with physical meaning can only be obtained

from the quadratic factor of (A9)

(e2-e~)v-2+(e3-ele2 )u-l+ele, -e~=0.

(A1O)

A real and positive solution of (A1O) permits one to

calculate a2

1
rx2=-lnu.

A
(All)

The rest of the field parameters are given by

1 l+Kv~l..ln—
A cl–K

(A12)

E~/Eom = Keazzl (A13)

El’/Eom = (el – K) e~lzl (A14)
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where

)K= (ef–e2)/(++ue2+2e1 . (A15)

If it is assumed that the phase constant of one of the

modes is krtQwn from the phase distribution, the phase

constant of the other mode is obtained from (A3).

The phase shift ~ maybe obtained from the position of

one of the minima ( zz~) in the experimental beat pattern

((l=mzn++ ) }n =0,1,2,””. .
b

In case of uncertainty in the magnitude of some minima

in the measured interference pattern, it is possible to use a

similar procedure for identifying the unknown field param-

eters using only the magnitude and position of maxima or

other suitable combinations of both maxima and minima.
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